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In this paper, a combined Fourier spectral-finite element method is
proposed for solving two-dimensional, semi-periodic, unsteady
Navier—Stokes equations. The convergence is proved and the numerical
results are presented.  © 1992 Academic Press, Inc.

I. INTRODUCTION

When we study boundary layer stability, unsteady
seperation of viscous fluid flow, flow past a suddenly heated
vertical plate, and other fluid dynamics problems, we
have to solve Navier-Stokes equations with semi-periodic
boundary conditions. Many people have developed numeri-
cal methods to solve these problems. For instance,
Murdock [1, 2], Ingham [3, 4], Beringen [5], Milinazo
and Saffman [6], and Ben-yu Guo [7] used combined
spectral-finite difference methods. It means that spectral
methods are adopted in the periodic directions, while finite
difference methods are used in the non-periodic directions.
Recently, Canuto, Maday, and Quarteroni [8, 9], Ben-yu
Guo and Wei-ming Cao [10], and others, studied the com-
bined spectral (or pseudospectral)-finite element methods.
Another useful method is to use combined Fourier—
Chebyshev approximations [11-13]. In this method,
Fourier approximations are used in the periodic directions,
while Chebyshev approximations are used in the other
directions.

In this paper, we generalize the work of [8-10] to con-
struct a combined Fourier spectral-finite element scheme for
solving two-dimensional, semi-periodic, unsteady Navier—
Stokes equations. Surely such problems can also be solved
by spectral-finite difference methods or combined Fourier—
Chebyshev approximations. But it is difficult to extend them
to three-dimensional problems with non-rectangular
domains. On the contrary, the method in this paper can be
generalized easily to more complicated problems.

In Section I, we construct the combined spectral-finite
element scheme. In Section III, we state the convergence
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theorem. The numerical results are presented in Section IV.
They show that such a scheme gives much better performan-
ces than the usual finite element method does. We prove the
convergence in the final two sections.

Some lemmas proved in this paper are also useful for
other relevant problems.

II. THE SCHEME

Let
I={x/0<x<l1}, T={y/0<y<2n), Q=IxI

and U= (U, U®), P, f, and v > 0 be the velocity, the ratio
of pressure over density, the body force, and the kinetic
viscosity, respectively. We consider the two-dimensional
unsteady Navier-Stokes equations as follows:

oU
=5, HU-VIU+VP—y VU=,

n Qx(0,7],
V.U=0, in Qx([0,T],
Ul,_o=TU,, in Q.

(2.1)

Assume that U, P, and f have the period 2z for the variable
v, and that

U, y, t)=U(1, y, 1) =0,
Y(y,t)eIx[0,T).

In addition, P satisfies the following normalizing condition:

ﬂ P(x,p, 1) dxdy=0, Vie[0, T]
Q

For >0, we denote by H*(Q), ||-|| , and | |, the classical
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Sobolev space, its norm, and semi-norm, respectively. In

particular, we define ¥*(2)= H°(Q) with the norm |-/
and the inner product (-, -). Furthermore, define

Cr(Q)= {ne C*(2)/n has the period 2r

for the variable y},

Co Q)= {neC ()10, y)=n(1, y)=0,
Vyel}

H4(Q) and H{ () denote the closures of C(£2) and
Cg,(2)in H¥(Q2), respectively. We also define

2Q) = {ne.,?z([))/”!z " dQ=O}.

The generalized solution of (2.1) is the pair (U(¢), P(t))e
[H, ,(2)]7 x P?(RQ) satisfying

g; (U(1), o) + ((U(1) - V) U(1), v)
—b(v, P(t))+ va(U(1), v)

=(f(1),v),  VYve[H; ()}, (2.2)
b(U(1), w) =0, Vo e 23(Q),
U(O) = UO’

where

aln. &)= | (Vm(ve)de,
b(n. &) =[] (V-m)¢a2.

We introduce a trilinear form J(-, -, -): [(H'(£2))*]® -» R’
as follows:

—((¢-V)E, )]

Clearly, we have

J(n, @, 5)+J(E 0, 1)=0, (23)

and if V- ¢ =0, then
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Thus (2.2) is equivalent to

y
S U, o)+ (U, UG, v)
dt

—b(U, P(t))+ VCI(U(f), U)

—(f). ) Veel[H. (@) (24
b(U(t), w)=0, VYo e ZHQ),
U(0) = U,.

For numerical solution of (2.4), we approximate the first
equation directly. While to tackle the incompressible
constraint (i.e., the second equation of (2.4)), we adopt the
idea of artificial compression (see Téman [14]), that is, to
approximate the incompressible condition by the equation

pE (0, @)+ B, ) =0,

Yoe Z3(Q),

where f > 0 is a small parameter.

Now we construct the scheme. First, we devide I into M,
subintervals, with the nodes 0=x,<x, < --- <X, =1
Let I,=(x;, ,,x)), hy=x,—~x;, |, h=max, ;¢ u, h;, and
h' =min, o, h;. We assume, furthermore, that there
exists a positive constant d independent of the divisions of /,
such that A/h' < d. For any integer k£ >0, we denote by P,
the set of all the polynomials defined on R! of degree <k.
We define the finite element subspaces in the non-periodic
directions as

gft: {'I/”II[GPI(’ 1 <1<Mh}>
Sk=SknH)D).

Suppose N is a positive integer; we define the subspaces for
Fourier spectral approximations as follows:

Sy=Span{e”/|j| <N}.

Let a = (N, h, k), we define the following finite dimensional
subspace as the trial function space for the velocity

X,= {8, @Sy} x {8, @Sy
The trial function space for the pressure P is
Y,={SE®@Sy} n ZQ)

Let P, be the orthogonal projection from #*(I) onto Sy.
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T} is the piecewise Lagrange interpolation of order k from
C(T) onto S¥;i.e., for any ne C(I), [Ty e S¥ satisfies

m m
(IThn) (-’C/ 1 +%h1) =7 <X,_ ) +7(-h,),

0s<m<k 1<ISM,.
We obviously have that
PNOH:=H:°PN.

Let 7 be the mesh size in time ¢ and S, = {t=1//0<I<
[T/t]}. Define

1
n,(t)=;(n(t+r)— n(1)).

A fully discrete spectral-finite element scheme for (2.4) is
to find the pair (u(¢), p(1))e X, x Y, for all te S, such that
(u (1), v) + J(u(t) + dtu (1), u(t), v)
— b(v, p(1) + 01p (1))
+va(u(t) + otu,(t), v)
=(PyoIT; f(1),0),  VveX,,
B(p 1), w) + bu(t) + Otu (1), )
=0, YweY,,
w(0)=Pyo I+ 'U,,

(2.5)

p(0)=0,
where 4, 6 >0 and 6 > { are parameters.

Remark 1. Let @, be the L’-projection operator from
2*(Q) onto Y,. Then it follows from the second equation
of (2.5) that

i
B
+(1=6) 0. (V-u(1)].

plr+1)=p(t)— - [0¢,(V-u(t +1))

(2.6)

By substituting the above formula into the first equation of
(2.5), we obtain

(u(t+ 1), v)+ otJ(u(t + 1), u(t), v)
92 2
5 (@Y ult 7)), 9,V )
+ ovta(u(t + 1), v)

=R(1)(v), VveX,, (2.7)

where R(t) is a linear form defined on X, and depends only
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on u(?), p(¢), and f(#). Clearly, if R(¢) =0, then by putting
v=u(t+1)in (2.7), we have from (2.3) that

2.2

7]
||u(z+r)||2+7’H%(v.u(m))”z

+ovt ju(t+1)|3=0.

Hence u(z+ 7)=0. This implies that (2.7) has exactly one
solution. As soon as u(z + t) is found, we can obtain p(z + 1)
by (2.6) immediately. In this way, we can solve the velocity
and the pressure separately. This is, indeed, one of the
advantages of the artificial compression treatment.

Remark 2. We observe from (2.7) that the artificial
compression coefficient f is, in fact, a penalty parameter for
restraint V- U = 0. Usually, a penalty method takes the term
1/e(V - U, V-v) (¢ = 0) to be the penalty function. But its
numerical result is not good. It is interesting that if we
calculate the integrations in the penalty function by a rough
quadrature rule instead of caiculating them exactly, then the
results become better [15, 16]. This method is called the
selective reduced integration and penalty method (or RIP
method). The projection operator ¢, in the penalty function
(0%t (V -u(t +1)), @,V-v)) in (2.7) is just an
expression of the idea of the RIP method.

III. THE CONVERGENCE THEOREM

For describing the errors of the numerical solutions, we
introduce the notation,

E(n, &, )= In(O)]> + B IEWDI* +vi(o +0) |n(1)];

+t )

'<t—1

+BUSAN) +v(1 ~68) In()]3},

{rot(ln ()11

where £ > 0 is a suitably small constant, r, > 0.
Suppose 4 is a Banach space, and 3 < R is an interval.
We define

LN, B)= {ﬂ/f]i 3%,
s = ([, n0E dr) <0},

Similarly, we define the spaces C(9; #), and H*(3; #), etc.
For convenience, we recall the definition of non-isotropic
Sobolev spaces as [17], for r 20, and s =0,

H(Q)= 2L H' (D)~ H(I, (1)),
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equipped with the norm

-

Ul sy = U Sz, ) + 100 sz )
Ifr=1, s>1, then we define
M (Q)=H"(Q)nH L, H "))~ H* (I, H'(I)),

with the norm

firr M) (Hn“il'“"({)) + IInf i{l(i,H' BRI

+ linl %1**‘(7.}1‘(1)))”2-

Besides, we denote by H"(£2) the closure of C' () in
H™(Q), H;" (), and M ;°,(£2) are the closures of C7,(£2)
in H"°(Q2) and M"°(82), respectively.

THEOREM 1. Let (U, P) be the solution of (2.4) and (u, p)
the solution of (2.5). Assume that Ue C(0, T, M°(2)) n
HY0, T; H(2) n H,""Y(Q)) n H0, T; %)),
PeC(0,T; H " '()nH' 0, T; £*R2)), feC(0, T,
H, =" Q)), with r>1, s> 1. F=min(r, k + 2). Suppose
B=0(1t?), h=0(N~*), and 1=0(N ") in (2.5), u=1,
4>0, h, N7\, and t are sufficiently small. If either of the
Jfollowing two conditions is satisfied:

(i) 6>3,0>0/(26—1), and i>max((1+u)/3, 1+
3pu—2ur, 34 u—2s); (3.1)
(i) o<iandt(C,h >+ N?)<20—1/(v(c+0(1—20)));

then there exists a positive constant C* depending only on U,
P, f, and v, such that for all t€ S, we have

E(U—u, P—p, ) SCH>+ H— N N3 -9y,

Remark 2.
necessary.

If §=0>1 then condition (3.1) is not

IV. NUMERICAL RESULTS

In this section, we examine the numerical performances of
the combined spectral-finite element scheme (2.5) by two

TABLE 1
Example (1), 7=10"2 =103 ¢=5

N=4 N=8

E*(u‘”, [) E*(u'z’, t) E*(u(“, t) E*(u‘z', t)

Spectral-  M,=5 21379-3 98124-4  7.6151-4  8.2940-4
FEM. M,=10 19619-3 602854 26212-4  3.5686-4
FEM. M,=5 187242 108822 38954-3  24330-4

M,=10 1.6047-2 9.0782-3 38383-3 222023
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TABLE I

Example (2), =10 % =10 ' =5

N=4 N =¥

E*(utV t) EX¥(u' 1y E*(u'V oty E*u'Y) 1y

6.7098-4  89871-4  59659-4

M,=5 189533
FEM. M,=10 17296-3 49014-4  50291-4  3.5346-4
F.EM. M,=5 144522 7.6244-3  46631-3 223373
M,=10 14994-2  7.6532-3  57109-3  2.1279-3

examples. In each example, the velocity is determined
separately by the stream function

(1
(2)

while the pressure P is taken to be O constantly. Besides, we
assume the kinetic viscosity v =102 and choose the body
force f'such that U, P, and f'satisfy (2.4) exactly.

We consider only the case of k = 0 in scheme (2.5); i.e., the
finite element subspaces in the x direction for (¢'", 4'*’) and
p are piecewise linear, piecewise quadratic, and piecewise
constant, respectively. For comparison, we also solve (2.4)
by the finite element method, in which the domain € is
divided into M (2N + 1) congruent small rectangles, each
with the length 4, =1/M, and the width h, =2n/(2N +1).
We take the trial space for (u'"), u'*') and p to be piecewise
biquadratic, piecewise biquadratic, and piecewise constant,
separately. The periodic conditions are also enforced in the
y direction. The finite element scheme is constructed
similarly to (2.5) by artificial compression. Besides, to
avoid calculating the integrations in the nonlinear terms
repeatedly when we solve the linear equations in every time
level by iteration, we approximate the nonlinear terms
explicitly (ie., d =0), in both the spectral-finite element and
the finite element schemes, but we always approximate the
linear terms implicitly (ie., 8 =0 =1).

For describing the accuracy, we define the discrete
L*-normed relative error for »'"’ and u® as

Yix, v, 1y=0.1exp(x+siny+0.1¢),
Y(x, v, ) =0.1 sin(x) exp(sin y + 0.17),

Z(x.y)e.()”l ]U“)(X, Vs t) - u“)(x’ Vs I)IZ}L”Z

E*(u'”, t)={
Z(x. e ,U(I)(x’ Y t)'z

TABLE 111
Example (1), with Scheme (2.5), M, =5,t=10"21=5

N=4 N=8
EXu'V, 1) E*?, 1) B r)  E*u™.1)
p=10"2 213963 9.7437-4 7.5778-4 8.2725-4
B=10"3 213793 9.8124-4 761514 82940-4
p=10"* 205373 1.1868-3 9.1537-4 1.1504-3
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TABLE 1V
Example (2), with Scheme (2.5), M, =5,1=10"%1=5

N=4 N=8
E*(u'V, 1) EXu'?, 1) EXu'V, 1) Ex(u'?, 1)
p=10"2 1.9127-3 6.7048-4 8.9682-4 5.9533-4
p=10 -3 1.8953-3 6.7098-4 8.9871-4 5.9659-4
p=10""* 1.8107-3 1.0813-3 1.5057-3 1.0408-3
where

QU= {(x, y)x=jihe y=hoh,,
1<j,<M,—1,1</,<2N+1},

QP ={(x, p)/x=j\h /2, y=j2h,/2,
1</, <2M,— 1, 1< j, 22N+ 1)}

The numerical results show that

(1) For the same mesh sizes M, and N, the spectral-
finite element scheme gives more accurate results than the
finite element scheme does (see Table I and Table II).
However, the computing times requires by each are almost
the same.

(2) We observe from Theorem 1 that if = O(t?), then
the artificial compression term B(3P/ét) does not affect the
order of the error E*(u"), t). However, in practical com-
putation, the value of § determines the structure of the
linear equations derived from scheme (2.5). An excessively
small 8 would result in a large condition number of the
corresponding matrix (in fact, the matrix tends to be
singular, as § tends to 0) and require a greater amount of
computation. Consequently, we should take into account
the matrix structure apart from the approximation order,
when we select an appropriate . In the examples in this sec-
tion, the results for § =102 and 103 are better than that
for f=10"* (see Table I1I and Table IV).

V. SOME LEMMAS

To prove Theorem 1, we need the following lemmas.

LemMmA 1. [8]. If r>4, s20, F=min(r,k+1), then
there exists a positive constant ¢ independent of h and N, such
that for all n e H,°(2),

ln—Pye 5| < c(h"+ N =) 0] yrsar-
LEmma 2 [8].

If Nh<const, r=21, s=21, 7=
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min(r, k+ 1), then there exists a positive constant ¢
independent of h and N, such that for all ne M7;*(£2),

In—PyoIinl, <ch™ '+ N'70) 19l agray-

In particular, we have for all n e H }(Q) that

IPNOHI;:WllgC Inlly.

LEMMA 3.  There exists a linear operator Q,: [H 2]
— X,, and a positive constant ¢ independent of h and N, such
that

(i) b(n—Q.n 0)=0, Yoe¥, Vne[H ()]
(5.1)

If Nh<Const, and r 2 1, s 2 1, then we have for all
ne [M™(2)]? that

(i)

In—Q.nly <ch '+ N'"*) | MRS (0)

F=min(r, k + 2), (5.2)
1Q.nly <clnly. (5.3)
Proof. Let
'I(”> es) ('lj('l)(x)) v . 5
= = eV e (Hy (82)).
! <'7‘2’ PR o
We have from Sobolev’s embedding theorem that

H} o(2)s (I, C(I)). Hence
ni™ e C(I), V0]jl<oo, m=1,2.

Let

oan(S0). 5 (S
Q@ IsN g )'7} '(x)
where Q{"'n™ e S} ", m=1, 2, are defined by
Q™ (x)=n"(x), 0<I<M,.
J, Lm0~ 0] @lx) dx =0, (54)
VoeP,,,_ ,1<I<M,.
It is obvious that Q, is a well-defined linear operator from

[H, p(£2)]? onto X,.
We first prove (5.1). Suppose

o= Y wi(x)e?eY,.



380

Then we have a)je§§, and hence w;|; € P,. Thus we have

from (5.4) that

b(n—Q,n, w)
6 l 1 l
i — Qﬁf)nf’)(x)] o,(x) dx

D) j[ (1(x) = Q4 n{(x))

<N i<ism,

0x
=0,

22 () gD () - O (2)(x)w(x)] dx

i Next we prove (5.2). Considgr thg reference element
I=1[0, 1], and a linear opgratorAQ:ACA(I) - P, ,(k'=kor
k — 1) defined as: for any ¢ e C({), Q¢ € P, , satisfies

Qf(x)=£&(x),  x=0,1,
(5.5)
j (Q&(x) ~ &(x)) w(x) dx =0, YoeP,.
It is not difficult to verify that
Qe(C(d), wrul), ¥m=20,g21, (53)
and
Qf;é, erpkuu- (5.6)

Moreover, we define the operator F: /- I, by
x=FX)=hx+x,_,.

and a _correspondence between C(f) and C([)), ie., for any
Ee C(1),

Then we can prove for any Q,,, the restriction of o
(m=1or2)on I, that

(5.7)
In fact,

N - an
Qh.1f(0) = Qh,/f(qu}: E(x,_ ) =E(0)=Q¢4(0)
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L N
and, similarly, @, ,&(1)

ZQf(l) Besides, we have
/\ & 0
._(Qh/f‘f)(x)(u(\)dx
</
1 -
};J (O & —ENx) w(x) dx
=0, Vi e P,

The uniqueness of Q assures the validity of (5.7).

By an argument analogous to the classical error estima-
tion for function interpolation (see [ 18]), we obtain from
(5.5)—(5.7) that

g™ = Qi m™ | < ch™ In™| gy

( o —
i — QL < ch™ ™ s

where 7, = min(r, k + m+ 1). Thus we have

n—Q,nli= Z {

m=1

Y Lnm—

1< N
+J7 ™ =

(m),,(m)) 2
Qj n; )'l
]

+ 3 [nf™i +12IM,""’HZJ}

>N

2
<Y {Chz(ﬁl) > L™l

m=1 ES
2:2 2
+h’j I”»]('m)’ﬂf(l)]

+CN2(1—/.V) Z [lj|2(x—l)lr,;m)($

1Jil>N
e un}m’nzj}

(B NN il e

with 7= min(7,, #,)} = min{r, k + 2).

Finally, we can obtain (5.3) by putting r=s=11n (5.2).

LeEMMA 4. There exists a positive constant C,, depending
on the parameter d, but not on h and N, such that for all
neSItT" @Sy, m=1,2,

”"IHLOU(Q)\th VAN Inll, (5.8)
nly < (cqh ™+ N2 in]. (59)

Proof. Let

n= Z 1;(x) eUyESf,+m®SN;

ljilsnN
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then 5, € S%*™ Thus by the inverse inequality in the finite
element method, we have [18]

H"I;‘ i ren S cqah™ 1z H"Ij I,

|’7_;‘| 1 gcdh” “77_,' I,

and hence

7 o) S z |’7j|1_>°(1)

lils N

<cgh™ %yl

lsN

12
<c4h*”2N”2( 5 |In,-|\2>
1IN

<c h PNV n],
1/2
|nll=[ Y (i + /7 l|njuz)]
[JISN
172

<[ Y (csh ™2 n; I+ N? Ilnjllz)]

lilsN
<(eh 2+ N iyl

LEMMA 5. There exists a positive constant ¢ depending
only on 8, such that for all n, &, g € [Hy p(R2)1°,

0 @, O <clnli 1€ ol el (5.10)
[(n. @ O < c ol (Inl, 1817 1€117

+ ' il e, (5.11)
I, @, DI <clnly 12l Lol (5.12)

Proof. We have from Sobolev’s embedding theorem
that H'(Q) s £5(Q). By the equivalence of the norm |||,
and the semi-norm ||, over H, ,(Q), and Holder’s
inequality, we have

loll o3y < @l G @l Siay < c ol [0l

Hence
01 0, <3| 1o V)me| de
Q
+4] 1o -V)E)n| do
Q

<cinl, ”6”376(9) ”(P||y3(g)
+c &l ”’7“376(.()) lol FX)

1/2

<elnly 1€l el lol
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Inequality (5.11) can be proved similarly; (5.12) can be
obtained readily by (5.10) and || < ¢ |@};.

LemMMma 6 [19]. Suppose that the following conditions
are fulfilled,

(1) Z(2) is a non-negative function defined on S,, D,,
D,, and p are non-negative constants,

(i1) H is a real-valued function defined on R', such that
H(£)<0 for < D,,

(i) forallteS,,

Z(n<p+ Yy [DZ(1)+H(Z(!')],

r<r—rt

(iv) ZO0Y<p, and pe®" < D,, for some t €S,
then, we have for all t < t, that

Z(t) < peP.

In particular, if H(E)<O for all £€RY, then the above
inequality holds for all t€ S, and any p.

V1. THE PROOF OF CONVERGENCE

Let the pair (U, P) be the solution of (2.4). Assume that
they are suitably smooth. Let

u*(t)=Q.U(1),  p*(1)=¢,P(1).
Then we have from (2.4) and (5.1) that

(uF(), v)+ J(u*(t) + otuF(2), u*(r), v)
—b(v, p*(1) + O1p (1))
+ va(u*(t) + otuX(t), v)

8

=(PyeII} f(1),v) + ), E(v),

Voe (Hy Q)
B(pH(1), @)+ b(u*(1) + Ot f (1), w)
—Ey(w), VYoe2¥Q),
u*(0)=0,U,,  p*(0)=0, P(0),

where

ou
= _
El(v) (ut 6[ ’ v>9

EZ(U) = ‘](u*’ u*, U) -J( Us U’ U))
E,(v) = otJ(u*, u*, v),
Ey(v)=b(v, P~ p*),
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Es(v)= —6tb(v, p}), where
= * __

Eov)=va(u*—U,v) Fy = 2J(u* + dtu¥. i it).

E.(v)=vota(u¥, v),

Eg(v)=(f—Pyo 1T, f,v),

Eq(w)=B(p¥, w).

Fy=mtJ(u* + otuk, i, i,),
Fy=1(m-—28) J(#, u*, i,),
F,=tm-23)J(ii, 4, i,).

Let the pair (u, p) be the solution of (2.5). Define By taking = 2(1) + mtj,(1) in the second equation of

(6.2), we have from (6.3) that
d(t)=u(t)—u*(t),  p(t)=p(t)— p*(1).

BUILB(DN), + Br(m—1) | B0
+ b(i(t) + Otii,(¢), 2p(t) + mzp (1))
= —E5(2p(t) + m1p (1)). (6.5)

By substracting (2.5) from (6.1), we obtain that

(@, (1), v) + J(u*(t) + dtu}(z), #(t), v)

- . " -
(@0 + otit (), w*(1) + &(1), ) By putting (6.4) and (6.5) together, we obtain

—b(v, p(1) + 01p (1))
+ va(fi(r) + otii (1), v) (a1 + B 1 5)I2), + t(m—1) (@)
8 T 2
= _Y E@), VeeX,, (62) + B IBADIT)+2v la(r)]y
/=1 m . 5
+ve(o+3) Gatold,
B(B (1), w) + b(a(r) + Oti1,(1), w)
= — E4(w), YoeY,, + vt? (ma*a—%> li,(1)2
#0)= —Q, Uy + Py 151U, .
0} = — +3 Fi(t) +1(20 —m) H(1)
p(0)=~¢,P(0). L Fil)+ (20 —m) H(
8
Let m > 1 be a undetermined constant. Noting (3.1) and ==} E/(20(1) +mril (1))
the identity [19] =1
— E5(2p(1) + mtp (1)), (6.6)
2a(6), #(1)) = (a&()?),— = la ()], (6.3)  where
we have by taking v = 2i(¢) + mzii,(t) in the first equation of H(t)=bli,, p)—b(#, p,).

(6.2) that
We now estimate |F,|. Suppose ¢ >0 is a suitably small

(la?), + t(m— V) a())* + 2v |a(2)|} constant. Then we have from (5.3) and (5.10) that
H 3 1

[yl clu*+otul |, a2 il 37

+ vt <0+%> (la(n)l17),

<c ||U|] CO, T; H(2)) flal) 12 |ﬁ’:1;/2
my 1
+vr2<ma—ff—3> iz (03 <z evlil}
4
+ Z F](t)~b(2ﬁ(t)+mrat(t), ﬁ(t)-‘l'e‘lfﬁ,([)) +£' ” U” 2é(() T, HY(2)) ”ﬁ” Iall
=1 eV T

8
~ o C
- _;1 E,(2i(1) + mrii (1)), (6.4) <ev 117|f+EE LU 0,150ty N
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and

|Fyi < emt | Ul cio. 7. 12y
x i) 2 a1,
<evt ld|y i,

cT m
+— v ”U” (0, T H(£2)) lall Ve, |,

<ev |i|? +ev® &, |3

cm?

+£3v3 |\U“4C(0. T H(R2)) lla)|>.

Similarly, we can obtain from (5.11) that

|F3| <ctIm—26] |u*|,
x(lal, a1V |a, |,
+ah > jal Y i)
<evt il |4,l,
ct(m—26)?
+ £V ” U“ C(0, T HY(£2))
x ({all la,l, + \al, la,l)
<ev |3 +evt® |#, |}
. c(m—28)*
+ et ||u,||2+—8—3v3—‘

x | U] 2*(0,7';1-11(9)) (Nl + |ﬁ|f)

From integrating by parts in F,, we have by (5.8) that

Fi=cim=20l || @90z,

+%(V-a)(a-a,)] dQ’

< et jm—29| ”augwg) il fla, |

ctN(m—26)?

12112
a)* |43
7 lall™ @y

<er i, ||*+

Next we examine |E,|. First, we have

|E (2@ + mrit,)| < @) * + e ||d, |1
2 2
(1422 -2
4¢

ot

We have, furthermore, from (5.12) that

|Ex(28 + mrit,)| < |J(U, u* — U, 2 + mid, )|
+ |J(u* = U, u*, 2 + mi, )|
<c |Ul, lu*—Ul, 126+ mtit, |,

<ev @l +evt® i, |3
+= (1 +m—2)
&v 4
X Ul o, remiioy 1#* — UL
and
|E(2@ + mzil,)|

<cot |ufly il [2d + mri, |y

Lev il +evt® |i, |}
cd%1? m? N
¥ (L%—>HMfWK

&v 4

Besides, it is not difficult to show that

7
Y, |E/ 20+ mril,)| <ev il + eve’ 4,7

=4
¢ m*
- ! *_ p|2
+£v(1+ 4>(|\p P|

+v|u* = UlT+ 0% | pFII?
+va’t?|U,13),
| Eg(2 + mrit,)| < ||i#]* + ez ||, | ?

+(1+ 25 1= Py,
|Es(25 +mtp)| <B 1157 +eBr 1 5.11°
+B<1+Jﬁ)upﬂﬁ
By substituting the above estimations into (6.6), we obtain

(EO12+ B IO+ t(m — 1= Se) ()]
+BIBAON) + v(1 — 6e) (1))

wve (a5 o,

+vr? (ma -0 __’zﬂ_ 58) i (1)|2
+1(20 —m) H(t)

C, (la)*+ g 1pI*)
+ Cy(1) la(0)|7 + G(1), (6.7)
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where
C,=2+ cl+ M4;‘}(T =200 I U"“cgo‘r;y'(szn’
Cy(t)= —v +Er_(r_n;:_3£<i 1UI ¢ 0. 7m0
8 (12 oo
ey 4

ctN(m —26)?
+_—_____._

ch
G(1)= (1 +T~z>( v 20
B 4¢ “ T

+BpXON? + 1 (1) = Py 15 f(D)]?)

(o),

2

4

+ é}(l +%>[(V + U 2C(0.T;H1(Q)))
X [u*(t) = U+ |l pX () = P(D)II?

+va2e? U012 + 6% | pX(0))1*].

Now we choose the constants m and s. Take m =26 and
ro =0 to be sufficiently small. If ¢ > 1 and 6> /(26— 1),
then we can take ¢ and r, to be so small that

20 > max <1 +4e+rg,

20 + 10¢
201 )

If 6 <6/(20—1), and

20-1

—2 2
vi{fCsh "+ N )<0'+B(1——20')’

then we take ¢ and r, to be so small that

20—1—4de—ro=>vi[20( —6) + 0 + 5¢]
x(Csh~ 2+ N?).

By (5.9), we have in both cases that
t(m—1—4de)([la (D)) + B IO
Fve? <m6— o2 Sa) I ()12
> rot(Ia 012 + B 1501

Consequently, we obtain from (6.7) that

GUO AND CAO

A ol + B PO, + rot(la g’
+ B ()7 + (L —62) lale)]]
(o4 )i,
< Ci(la) + B Ipn3)
+ Cy(t) ()]} + G(r).

Let E(n, &, t) be defined as in Section I11, and

p(1) = [4(0)]12 + B | 5(0)]2 + ve (a+§) 1#(0)]

+r Y G,

r's<ie—-t
By summing (6.9) for all ¢’ <t—1, t' € .S,, we obtain

E@p, t)y<p(t)+1 Y

<ttt

+Co(t) |a(t)17).

(C.E(@, p, 1')
(6.10)

Clearly, if the mesh size 7 is sufficiently smali, then we have

v ctN(m—26)*

G =5+ o ()2

Hence we have from Lemma 6 that if there exists a 7, € S,
such that

evh

L — 611
S 2etNm =25 ) (6-11)

p(y)

then we have forall 1< ¢, 1€ S,

E(a, p, t) < p(t) e,

Thus, in order to obtain the convergence, we only need to
obtain the order of p(¢) and verify (6.11).
By Lemma 2 and (5.2), we have

[3#(0)]| < ¢ [@(0)], < c(|U(0) - Q, U(0)],
+1U(0) = Py IT; 71 U(0)])
<ch” '+ N'72) [U0)] yyrsiays
7=min(r, k +2),
lu*(1)— U(O)], (B + N' =) (U pprsay-
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By Lemma 1, we have

I AOY] < c [ P(O)]l,
lp*(1)—P() <c(h” '+ N'~°)
X NP s
()= Pyo I f(D)] Sc(h ™'+ N'7)
XSO rors- 10y

By using Taylor’s formula, we obtain that

1
VD] ==

T

t+1 9l
— (") dt’
J-r ot ( ) ‘

1

U

t+1 a
grl/za i
1

o (')

2 1/2
dt’) R
1

and, similarly,

Ip*) <c P (D)

et 2 (JI+T “%7}) ()

Besides, it is not difficult to show that

2 1/2
dt’) .

ou
ur(t) === ()

ouU
U1 = (1)

<ULt = ub(0)] + '

1 e+ o . , ,

g?f, = (U—u)(0)] dr
l t+e r’ aZU " " ’
+-;£ J; —a‘—ty(t ) dt” dt

SCTVI/Z (h;71 +N1*3)

e foU |12 12
X [J. dt’:l
' HI-Ls-1(2)

ot
P 2 12
+et 2 (J -at—z(t') dt’) )

T

()

$81/101/2-11

Thus we have from the above estimates that

P(l)SC*(Tz_*_hz(ffn_*_Nzu v.s)+ﬁ)'

where the constant C* is described in Theorem 1.

Finally, we show that if A, N ~', 1, and § are sufficiently

small and satisfy some conditions, then (6.11) holds for

I

=T. In fact, suppose B=0(t?), h=0(N"*), and

1=0(N %), with 4, u>0.1f (3.1) holds for 6 > ¢/(20 — 1),
then we have

INE NP+ 27D N2 4 ) -0,
as h, N, 1-0. (6.12)

Thus, in this case we have (6.11)fort, = T. If 6 < 0/(26 — 1)
and (6.8) is satisfied, in addition, then we have (6.12) also.

H

ence (6.11) holds for 1, = T. Thus we complete the proof

of Theorem 1.

3

o BRI NEEV A N o]

10.
1.
12.
13.

15.
16.

17.
18.

19.

REFERENCES

. J. W. Murdock, A144 J. 15, 1167 (1977).

. J. W. Murdock, AIAA Paper 86-0434, Washington, DC, 1986
(unpublished).
. D. B. Ingham, J. Comput. Phys. 53, 90 (1984).

. D. B. Ingham, Proc. R. Soc. London A 402, 109 (1985).

. S. Beringen, J. Fluid Mech. 148, 413 (1984).

F. A. Milinazo, and P. G. Saffman, J. Fluid Mech. 160, 281 (1985).
. B-Y. Guo, J. Comput. Math. 6, 238 (1988).

. C. Canuto, Y. Maday, and A. Quarteroni, Numer. Math. 39, 205
(1982).

. C. Canuto, Y. Maday, and A. Quarteroni, Numer. Math. 44, 201
(1984).

B.-Y. Guo and W.-M. Cao, Acta Math. Appl. Sin. 7, 1 (1991).

S. A. Orszag, J. Fluid Mech. 49, 75 (1971).

S. A. Orszag and L. C. Kells, J. Fluid Mech. 96, 159 (1980).

B. L. Rozhdestvensky and I. N. Simakin, J. Fluid Mech. 147, 261
(1984).

. R. Téman, Navier-Stokes Equations (North-Holland, Amsterdam,
1977).

L. Ying, Adv. in Math. 12, 124 (1983).

J. T. Oden, “RIP-—Methods for Stokesian Flows,” Finite Element
Methods in Fluids, edited by R. H. Gallagher et al. (Wiley, New York,
1982).

P. Grisvard, Ann. Sci. Ecole Norm. Sup. 4, 311 (1969).

P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-
Hoilland, Amsterdam, 1978).

B.-Y. Guo, Difference Methods for Partial Differential Equations
(Science Press, Beijing, 1988).



