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In this paper, a combined Fourier spectral-finite element method is 
proposed for solving two-dimensional, semi-periodic, unsteady 
Navier-Stokes equations. The convergence is proved and the numerical 
results are presented. 0 1992 Academic Press. Inc 

I. INTRODUCTION 

When we study boundary layer stability, unsteady 
seperation of viscous fluid flow, flow past a suddenly heated 
vertical plate, and other fluid dynamics problems, we 
have to solve Navier-Stokes equations with semi-periodic 
boundary conditions. Many people have developed numeri- 
cal methods to solve these problems. For instance, 
Murdock [ 1,2], Ingham [3,4], Beringen [S], Milinazo 
and Saffman [6], and Ben-yu Guo [7] used combined 
spectral-finite difference methods. It means that spectral 
methods are adopted in the periodic directions, while finite 
difference methods are used in the non-periodic directions. 
Recently, Canuto, Maday, and Quarteroni [S, 91, Ben-yu 
Guo and Wei-ming Cao [lo], and others, studied the com- 
bined spectral (or pseudospectral)-finite element methods. 
Another useful method is to use combined Fourier- 
Chebyshev approximations [ 1 l-131. In this method, 
Fourier approximations are used in the periodic directions, 
while Chebyshev approximations are used in the other 
directions. 

In this paper, we generalize the work of [8-lo] to con- 
struct a combined Fourier spectral-finite element scheme for 
solving two-dimensional, semi-periodic, unsteady Navier- 
Stokes equations. Surely such problems can also be solved 
by spectral-finite difference methods or combined Fourier- 
Chebyshev approximations. But it is difficult to extend them 
to three-dimensional problems with non-rectangular 
domains. On the contrary, the method in this paper can be 
generalized easily to more complicated problems. 

In Section II, we construct the combined spectral-finite 
element scheme. In Section III, we state the convergence 

theorem. The numerical results are presented in Section IV. 
They show that such a scheme gives much better performan- 
ces than the usual finite element method does. We prove the 
convergence in the final two sections. 

Some lemmas proved in this paper are also useful for 
other relevant problems. 

II. THE SCHEME 

Let 

I= {x/O<x<lj, I= {y/O<y<271, Q=Zxf, 

andU=(U , , (‘) UC*‘) P,f, and v > 0 be the velocity, the ratio 
of pressure over density, the body force, and the kinetic 
viscosity, respectively. We consider the two-dimensional 
unsteady Navier-Stokes equations as follows: 

au 
‘I+(u.v)u+vP-vv=u=~ 

in D x (0, T], 

v. u=o, in 0 x [0, T], 
(2.1) 

Ul,=,= UC, in Sz. 

Assume that U, P, andfhave the period 27~ for the variable 
y, and that 

WAY, t)= U(1, y, t)=O, 

V(y, t) E TX [O, T-j. 

In addition, P satisfies the following normalizing condition: 

i‘s P(x, y, t) dx dy = 0, V’tE [O, T]. 
R 

For P B 0, we denote by HP(G), // . )/ ~ and 1. / ~ the classical 
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Sobolev space, its norm, and semi-norm, respectively. In Thus (2.2) is equivalent tc, 
particular, we define 9*(Q) = Ho(Q) with the norm /j !1 
and the inner product ( ., ). Furthermore, detine d 

,tr ( u(t), 1: ) i- J( U( t ), U( f ). I’ 1 

C’;(Q) = (9 E Cz(Q)/q has the period 271 - h(u, P(t)) + va( u(t), u) 

for the variable JJ}, = (f(t). c), V’C’E C~:.,wP, 12.41 

c~~(~)=(~~c,“(~)/g(o,.Y)=rl(l,)I)=o, h(u(r), 0) = 0, vco E P*(n), 

vy E I”}. U(0) = u,,. 

H;(Q) and H;,,(Q) denote the closures of C,Z(Q) and For numerical solution of (2.4), we approximate the first 

C;,(Q) in HP(Q), respectively. We also define equation directly. While to tackle the incompressible 
constraint (i.e., the second equation of (2.4)), we adopt the 
idea of artificial compression (see Teman [ 14]), that is, to 
approximate the incompressible condition by the equation 

The generalized solution of (2.1) is the pair (U(t), P(t)) E 
[HA,,(Q)]* x P*(Q) satisfying 

where 

dQ. 

v’w E B”(Q), 

where /? > 0 is a small parameter. 
Now we construct the scheme. First, we devide I into M, 

subintervals, with the nodes 0 = x0 < X, < . . < x,,,,~ = 1. 
(2’2) Let Z,=(x,-1,x,), Iz,=x~--x,~~, h=max lGrGMh h,, and 

h’=min,.,.,, h,. We assume, furthermore, that there 
exists a positive constant d independent of the divisions of Z, 
such that hjh’ 6 d. For any integer k 3 0, we denote by Pk 
the set of all the polynomials defined on R’ of degree <k. 
We define the finite element subspaces in the non-periodic 
directions as 

Suppose N is a positive integer; we define the subspaces for 
We introduce a trilinear form J( ., ., .): [(H’(sZ))‘]‘-+ R’ Fourier spectral approximations as follows: 
as follows: 

S,=Span{e”‘lljl GN}. 
4% cp, 0 = m? .vbL <I 

- ((cp .V)5? ?)I. Let a = (N, h, k), we define the following finite dimensional 
subspace as the trial function space for the velocity 

Clearly, we have 

4% cp, 5) + 45, cp5 ?) = 02 

Jr,= (s;+l OS,} x {S~+*@SN}. 

(2.3) The trial function space for the pressure P is 

andifV.cp=O, then Y,= {s,“os,}nB*(Q). 

4% cp, 5) = ((v .Vh 5). Let P, be the orthogonal projection from .9*(T) onto S,. 



ZZ: is the piecewise Lagrange interpolation of order k from 
C(7) onto Si ; i.e., for any q E C(7), Z7:q E St satisfies 
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on u(t), p(t), and f(t). Clearly, if R(t) = 0, then by putting 
u = u(t + t) in (2.7), we have from (2.3) that 

O<m<k, 1616M,. 

We obviously have that 

Let z be the mesh size in time t and S,= {t=lz/O<ld 
[ T/T] }. Define 

A fully discrete spectral-finite element scheme for (2.4) is 
to find the pair (u(t), p(t)) E X, x Y, for all t E S,, such that 

(4th u) + J(u(t) + 6?(t), 4th u) 

- NU? P(t) + b,(t)) 

+ va( u( t) + b724,( t), u) 

= Rv~~~.m, u), QuEX,, 

P(Pl(t)t 0) + @u(t) + 07%(t), 0) 

= 0, QWE Y,, 

u(O)= PNdi$flU,, p(O) = 0, 

where 6, 0 > 0 and 0 > 4 are parameters. 

(2.5) 

Remark 1. Let 9, be the L*-projection operator from 
p’(Q) onto Y,. Then it follows from the second equation 
of (2.5) that 

+ (1 -0) cpdV.4t))l. (2.6) 

By substituting the above formula into the first equation of 
(2.5), we obtain 

where E > 0 is a suitably small constant, r. 2 0. 
Suppose ~?8 is a Banach space, and 9 c R’ is an interval. 

We define 

(u(t + t), u) + G7J(u(t + t), u(t), 0) 

+~(91(v-u(I+7)).9,(‘y.~)) 

+ avza(u(t + z), u) 

= R(t)(u), QuEX,, (2.7) 

where R(t) is a linear form defined on X_ and denends onlv 

l/91/ , @(,Fa) = IlrlWllB dt 

Similarly, we define the spaces C(9; G@), and H”(8; %?), etc. 
For convenience, we recall the definition of non-isotropic 

Sobolev spaces as [ 171, for r b 0, and s 3 0, 

I u I d H’qSZ) = LY*g H’(Z)) n H”(T, T*(z)). 

02t2 
I14t+7)l12+- I19,(v4~+7))l12 

B 

+ov7 lu(t+z)l:=o. 

Hence u(t + 7) = 0. This implies that (2.7) has exactly one 
solution. As soon as u( t + 7) is found, we can obtain p( t + 7) 

by (2.6) immediately. In this way, we can solve the velocity 
and the pressure separately. This is, indeed, one of the 
advantages of the artificial compression treatment. 

Remark 2. We observe from (2.7) that the artificial 
compression coefficient fl is, in fact, a penalty parameter for 
restraint V U = 0. Usually, a penalty method takes the term 
l/e(V . U, V . u) (E -+ 0) to be the penalty function. But its 
numerical result is not good. It is interesting that if we 
calculate the integrations in the penalty function by a rough 
quadrature rule instead of calculating them exactly, then the 
results become better [ 15, 161. This method is called the 
selective reduced integration and penalty method (or RIP 
method). The projection operator 9, in the penalty function 
(0’7’//?)(9,(V~ u(t + T)), 9,(V. u)) in (2.7) is just an 
expression of the idea of the RIP method. 

III. THE CONVERGENCE THEOREM 

For describing the errors of the numerical solutions, we 
introduce the notation, 

EC?, 4, t) = IltlWll’ + B 115(~)112 + v7(0 + 0) lul(t)l: 

+ 7 c ‘p07(llv&‘)ll’ 
1’<f-r 

+B l15,(t’)l12)+~(1 -6~) IvlWl:j, 



equipped with the norm 

Ifr>l,s>;l,thenwedefine 

M’.“(R)= HI-‘(Q)n H’(7, H’-‘(Z))n H” ‘(7, H’(I)), 

with the norm 

hll M’~‘(.Q) = (l/BIlL,n,+ ll?I/X1(i,H’ ‘(I)) 

+ l/‘11/~‘~~(i.~~(,)))‘~2. 

Besides, we denote by H;.‘(Q) the closure of C;(Q) in 
H’,“(Q), H;,>(Q), and M;,>(Q) are the closures of C;,(Q) 
in H’,“(Q) and M’,“(Q), respectively. 

THEOREM 1. Let ( U, P) be the solution of (2.4) and (u, p) 
the solution of (2.5). Assume that UE C(0, T; M;,“,(Q)) n 
H’(0, T; H’(Q) n HI;-‘+ l(Q)) n H’(O, T; 9*(Q)), 
PE C(0, T; H; ‘+ ‘(0) n H’(0, T; Z*(Q)), .f E C(0, T; 
H;- 1.1 -- l(Q)), w’ zth r 3 1, s > 1. V= min(r, k + 2). Suppose 
fl=O(~*), h=O(N-p), and r=O(N-‘) in (2.5), ,u>l, 
i > 0, h, N-l, and s are sufficiently small. If either of the 
following two conditions is satisfied: 

(i) a>$,B>(~/(2a-l), and 1>max((l+p)/3, l+ 
3p - 2pLr, 3 + ,u - 2s); (3.1) 

(ii) ad$andz(C,h-*+N*)<2&l/(v(g+t?(l-2~))); 

then there exists a positive constant C* depending only on V, 
P, S, and v, such that for all t E S,, we have 

E(V-u, P-p, t)~C*(22+h2(r-‘)+N2(’ -“‘). 

Remark 2. If 6 = 8 > i, then condition (3.1) is not 
necessary. 

IV. NUMERICAL RESULTS 

In this section, we examine the numerical performances of 
the combined spectral-finite element scheme (2.5) by two 

TABLE I 

Example (l), 7= 10e2, /I= lo-‘, t=5 

N=4 N=8 
-___ 

E*(u”‘, t) E*(&‘, t) E*(u’“, 1) E*(u’*‘, t) 

Spectral- M/$=5 2.1379-3 9.8124-4 7.6151-4 8.2940-4 
F.E.M. M, = 10 1.9619-3 6.0285-4 2.6212-4 3.5686-4 
F.E.M. M,=5 1.8724-2 1.0882-2 3.8954-3 2.4330-4 

M, = 10 1.6047-2 9.0782-3 3.8383-3 2.2202-3 

TABLE II 

Example (2 ). 5 = IO ‘, [I = 10 ‘. t -= 5 

Spectral- IV,,=5 1.8953-3 6.7098-4 8.9871-4 5.9659-4 
F.E.M. hi’,, = 10 1.7296-3 4.90 14-4 5.0291-4 3.5346-4 
F.F.M. M,=S 1.4452-2 7.6244-3 4.663 I-3 2.2337-3 

Mh= IO 1.4994-2 7.6532-3 5.7109-3 2.1279-3 

examples. In each example, the velocity is determined 
separately by the stream function 

(1) $(x, y, t) = 0.1 exp(x + sin y + 0.1 t), 
(2) $(x, I‘, t) = 0.1 sin(x) exp(sin y + O.lt), 

while the pressure P is taken to be 0 constantly. Besides, we 
assume the kinetic viscosity v = lo-*, and choose the body 
force f such that U, P, and f satisfy (2.4) exactly. 

We consider only the case of k = 0 in scheme (2.5); i.e., the 
finite element subspaces in the x direction for (u”‘, ,(*I) and 
p are piecewise linear, piecewise quadratic, and piecewise 
constant, respectively. For comparison, we also solve (2.4) 
by the finite element method, in which the domain G is 
divided into M,(2N+ 1) congruent small rectangles, each 
with the length h., = 1 /M, and the width h, = 27c/( 2N + 1). 
We take the trial space for (u”), ~6~)) and p to be piecewise 
biquadratic, piecewise biquadratic, and piecewise constant, 
separately. The periodic conditions are also enforced in the 
1’ direction. The finite element scheme is constructed 
similarly to (2.5) by artificial compression. Besides, to 
avoid calculating the integrations in the nonlinear terms 
repeatedly when we solve the linear equations in every time 
level by iteration, we approximate the nonlinear terms 
explicitly (i.e., 6 = 0), in both the spectral-finite element and 
the finite element schemes, but we always approximate the 
linear terms implicitly (i.e., 0 = (T = 1). 

For describing the accuracy, we define the discrete 
L2-normed relative error for u(‘) and u”) as 

E*(u”‘, t) = 
i 

C(x,y,tl2 ‘.2 ,i, / U”‘(x, y, t) - u”‘(X, y, t)12 
CCY, ,,,tn l/l I uqx, y, t)12 1 ’ 

TABLE III 

Example (l), with Scheme (2.5), M, = 5, T = 10e2, t = 5 

N = 4 N=8 

E*(u”‘, t) E*(u”‘, t) E*(u”‘, I) E*(lP’. I) 

p= lo-* 2.1396-3 9.7437-4 7.5778-4 8.2725-4 
p=10-3 2.1379-3 9.8124-4 7.6151-4 8.2940-4 
/I= 1o-4 2.0537-3 1.1868-3 9.1537-4 1.1504-3 
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TABLE IV 

Example (2), with Scheme (2.5), Mh = 5,~ = lo-*, r = 5 

N=4 N=8 

E*(u > “1 t) E*(u”‘, t) E*(u”‘, 1) E*(zP’, t) 

jj= 10-Z 1.9127-3 6.7048-4 8.9682-4 5.9533-4 
p=10-3 1.8953-3 6.7098-4 8.9871-4 5.9659-4 
p= 1om4 1X107-3 1.0813-3 1.5057-3 1.0408-3 

where 

Q(l)= {(X,y)/x=jlh.,y=jZhy, 

1~j,dMh-1,1~j2~2N+1}, 

Q(*) = {(x, y)/x = j, k/2, Y =j24J2, 

l<j,<2M,-1,1<jz<2(2N+1)}. 

The numerical results show that 

(1) For the same mesh sizes M, and N, the spectral- 
finite element scheme gives more accurate results than the 
finite element scheme does (see Table I and Table II). 
However, the computing times requires by each are almost 
the same. 

(2) We observe from Theorem 1 that if /I = 0(r2), then 
the artificial compression term p(aP/at) does not affect the 
order of the error E*(u(‘), t). However, in practical com- 
putation, the value of /I determines the structure of the 
linear equations derived from scheme (2.5). An excessively 
small /I would result in a large condition number of the 
corresponding matrix (in fact, the matrix tends to be 
singular, as b tends to 0) and require a greater amount of 
computation. Consequently, we should take into account 
the matrix structure apart from the approximation order, 
when we select an appropriate p. In the examples in this sec- 
tion, the results for p = 10e2 and lop3 are better than that 
for /I = 10e4 (see Table III and Table IV). 

V. SOME LEMMAS 

To prove Theorem 1, we need the following lemmas. 

LEMMA 1. [S]. Z’ r> $, ~20, ?=min(r, k+ l), then 
there exists a positive constant c independent of h and N, such 
that for all q E H>“(G), 

LEMMA 2 [S]. Zf Nh d const, r b 1, s 2 1, ? = 

min(r, k + l), then there exists a positive constant c 
independent of h and N, such that for all q E M:“(Q), 

Irl-P,on~rl(,~c(h’~‘+N’-“) IIqI/M~,‘(Rj. 

In particular, we have for all q E HL(SZ) that 

LEMMA 3. There exists a linear operator Q, : [HA,.(O)] * 
-+ X,, and a positive constant c independent of h and N, such 
that 

(i) NV - Q,yl, WI= 0, VOJ E Y,, h E CH~,,(Q)l’. 
(5.1) 

(ii) If Nh d Const, and r 2 1, s 3 1, then we haoefor all 
q E [AJF.“(S~)]~ that 

Iv - Q&16 c(h’-’ + TV’-“) lI&.,~.-‘~~~r 
?=min(r, k+2), 

lQ~l,dc 1~11. 

Proof. Let 

(5.2) 

(5.3) 

We have from Sobolev’s embedding theorem that 
H&(Q) 4 Lf?‘(?, C(Z)). Hence 

f$’ E C(I), Vljl-=cco, m=l,2. 

Let 

where Q~mm,~~m) E s:+,, m = 1,2, are defined by 

Qj,“+!-)(x,) = qcm)(x,), 
J J 

061<MM,. 

I Ii 
[Q~m’$m’(x) - Y$“(x)] o(x) dx = 0, (5.4) 

VWEP k+m-*, 1 dldM,. 

It is obvious that Q, is a well-defined linear operator from 
[H&(SZ)12 onto X,. 

We first prove (5.1). Suppose 

0 = 1 oj(x) e%“E Y,. 
iI/ SN’ 
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Then we have wi E sf, and hence o, 1 1, E Pk. Thus we have 
A 

and, similarly, Q,,,,<( 1 ) = Q[( 1). Besides, we have 
from (5.4) that 

+ ij( rfJ2’ - Q::al”,Cx~] 0, (x) dx 
= 0, VCG E Pk,. 

= 
c u[- (v.;“(x) - Qi?u;“(x)) 

The uniqueness of & assures the validity of (5.7). 

ljf<N I</<M, ‘/ 
By an argument analogous to the classical error estima- 

x 2 (x) + ij(r/j2’(x) - Qy+;“(x) co(x)] dx 

tion for function interpolation (see [lS]), we obtain from 
(5.5)-( 5.7) that 

Next we prove (5.2). Consider the reference element 
Z= CO, 11, and a linear operator Q: C(Z) + P,, + 2 (k’ = k or 
k - 1) defined as: for any [E C(i), &$E P,, + 2 satisfies 

&4(x, = m> x=0, 1, 

s 

(5.5) 
i @3x, - 5(x,, 4x) dx = 0, v’w E P,,. 

It is not difficult to verify that 

& E T( C(f), wyi)), VmBO,q>l, (5.5) 

and 

Moreover, we define the operator F: I-+ I, by 

where r, = min(r, k + m + 1). Thus we have 

+ l.ilZS lI?;“‘ll’l 
i 

d c(h2(‘-- ‘I + N”’ -“‘) /Ifj/) &J(o,’ 

x = F(z) = h/i + x[p,. 

and a correspondence between C(i) and C(Z,), i.e., for any 
with ? = min(?, , r2) = min(r, k + 2). 

5 E WA 
Finally, we can obtain (5.3) by putting r = s = 1 in (5.2). 

LEMMA 4. There exists a positive constant C,, depending 
[(a) = [(F-‘(x)) = t(x). on the parameter d, but not on h and N, such that for all 

rfESz+mQSN, m= 1,2, 

Then we can prove for any Qh,,, the restriction of QiW’ 
(m = 1 or 2) on Z!, that 

Q2 = &t (5.7) 

In fact, 

llrll Lm(Rj d c,h -- “2N”2 llqll, 

1~11 < (cdh -’ + N2)“’ ll~ll. 

Proof: Let 

(5.8) 

(5.9) 

q-= C rl,(x)e”YESt+mQSN; 
lil G N 
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then qj E Si + “I. Thus by the inverse inequality in the finite 
element method, we have [ 181 

and hence 

cc 1 d hh”2N1’2 ll~il, 

1 112 
IyIl1’ C (IVjlf+j2 IIrljl12) 

I/I GN 

I w 
G C (Cdh-* lIVjl12+N2 IIrljII’) 

IJICN 

d (cdhp2 + N2)“* llqll. 

LEMMA 5. There exists a positive constant c depending 
only on Q, such that for all q, 4, cp E [H&(Q)12, 

IJ(% cp, 01 Gc lrl, 151, lldl”2 Id:‘*, (5.10) 

14% cp, 01 G c Iv11 (Irl I 11511”2 I51 :‘* 

+ lIrlIl”* I’II Y2 I51 113 (5.11) 

I41,43 4)l Gc Id, ItI1 IdI. (5.12) 

Proof We have from Sobolev’s embedding theorem 
that H’(Q) 4 T’(G). By the equivalence of the norm 1). I), 
and the semi-norm I . I, over H&(Q), and Holder’s 
inequality, we have 

II cp II Y’(Q)< Ilcpll&) lI’PII~(n)~C Ild11’2 IC2. 

Hence 

Gc ldl II5llz~(n) Il(PIIL&2) 
+c 1511 llrlll L&2) Ilcp II L?‘(Q) 

G c IYI 1 I51 1 llvll 1’2 Ivl :y2. 

Inequality (5.11) can be proved similarly; (5.12) can be 
obtained readily by (5.10) and Ilcp(l <c I’pll. 

LEMMA 6 [ 193. Suppose that the following conditions 
are fulfilled, 

(i) Z(t) is a non-negative function defined on S,, D,, 
D,, and p are non-negative constants, 

(ii) H is a real-valuedfunction defined on RI, such that 
H(4) <Ofor 5 d D2, 

(iii) for ah t E S,, 

Z(t) d p + 1 CD,Z(t’) + ff(Z(t’))l, 
(‘<I--r 

(iv) Z(0) d p, and peu”’ < D,, for some t, E S,; 
then, we have for all t d t, that 

Z(t) < peD”. 

In particular, tf H(t) < 0 for all 4 E R’, then the above 
inequality holds for all t E: S, and any p. 

VI. THE PROOF OF CONVERGENCE 

Let the pair (U, P) be the solution of (2.4). Assume that 
they are suitably smooth. Let 

u*(t) = e, U(t), P*(t) = cp,fYt). 

Then we have from (2.4) and (5.1) that 

(u?(t), V)+J(U*(t)+Gzu:(t), u*(t), v) 

- b(v, p*(t) + dv:(t)) 

+ va(u*( t) + dzu:( t), v) 

=(PNon:f(t), v)+ 1 E,(v), 
/= I (6.1) 

\Jv E U-4i,.W2~ 

B(p:(tL 0) + @u*(t) + WYt), 0) 

= E,(w), vo E P(Q), 

u*(o) = Q, UC’, P*(O) = cp, P(O), 

where 

E*(v) = J(u*, u*, v) - J( U, U, v), 

E3(v) = GzJ(u*, u*, v), 

&(v)=b(u,P-P*), 
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WV) = -mu, P?), 
&j(u) = va(u* - u, u), 
E,(u) = vma(u:) u), 
&(u) = (f- ~N~JJ~J; u), 
4(w) = HP?, 0). 

Let the pair (u, p) be the solution of (2.5). Define 

ii(t) = u(t) - u*(t), P(t) = P(f) - P*(f). 

By substracting (2.5) from (6.1), we obtain that 

(k(t), u) + J(u*(t) + sTu,X(t), ii(t), u) 
+.qii(t)+sTa,(t), U*(t)+qt), u) 

- Hu, d(t) + W,(l)) 

where 

F,=2J(u* +ih,?,zxii), 
F,=mzJ(u*+ii~u:.ii,ii,), 
F, = t(m - 26)J(ii, u*, ii,), 

F4 =z(m-2b).I(ii, 17,5,). 

By taking o = 2jY(t) + mr$,(t) in the second equation of 
(6.2), we have from (6.3) that 

/3(IIP(f)ll’),+B~(m- 1) llPtWl12 
+b(ii(t)+Bzii,(t), 2p(t)+mzp,(t)) 

= -E,(2p(t)+mzp,(t)). (6.5) 

By putting (6.4) and (6.5) together, we obtain 

+ va(iq t) + azii,( t), 0) wwll’+P lIdWl12h+~(~- 1) (11~,(~)112 

= - i E,(u), VUEX,, (6.2) 
+B IIP,o)l12)+2V bw: 

/=I 

ml(t), 0) + b(fi(t) + emt), 0) 
+vz o+; (lii(t)l:), 

( > 

= -E,(o), VOE Y,, +vT’(m-y) Iii,(t),; 
ii(O)= -Q,u,+P,“q+‘U,, 

L-30) = - vJ(O). + ; F,(t)+2(28-m)H(t) 
I= 1 

Let m > 1 be a undetermined constant. Noting (3.1) and = - 5 E,(21?(t) +mG,(t)) 

the identity [ 191 
/=I 

--SW(t) + m@df)), 

2(fi,(t), f3t)) = W(~)ll’), - 7 IlW)ll’> (6.3) where 

(6.6) 

we have by taking u = 22?(t) + mzii,( t) in the first equation of 
(6.2) that 

H(t) = b(ii,, p) - b(ii, JT,). 

(Ilfi(t)l12), + $m - lM(~N2 + 3~ I~(t)lf 

We now estimate (F, ( . Suppose E > 0 is a suitably small 
constant. Then we have from (5.3) and (5.10) that 

+vz fJ+; (lii(t)l:), 
( > 

+v7’(mc7--o--!f) [ii,(t)l~ 

+ i F,(t)-b(2~(t)+mzii,(t),d(t)+8z~,(t)) 

= - i: E,(2C(t)+mzii,(t)), 
I= I 

(6.4) 4&V I#+-& wlI4C(o,T;H~(R)) l1412? 
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and We have, furthermore, from (5.12) that 

Similarly, we can obtain from (5.11) that 

IF31 <CT lm-261 b*ll 

x(14, llw’* lW2 

+ ll~ll”* be* l&II) 
<&VT IA, l&l, 

+ cT(m; 26)2 II f-41 zc(O, T;H1(R)) 

x (Ilfill I~,11 + Ml IlfiAl) 
d&V p(:+&VT* lii,l: 

+EZ llii,112+ 
c(m - 26)4 

E’V’ 

x II ~lI4C(O,T;H’(D)) Wll’ -t 1. 

From integrating by parts in F4, we have by (5.8) that 

IF41 =z Im-261 J [((ii.V)ii)ii, 
R 

+; (V . ii)(ii . ii,)] La2 

G ~7 Im - 261 l1419e”~n~ I4 1 II& II 

BEZ ll~,ll*+ cwym* ll42 1612. 

Next we examine I E,I . First, we have 

IE1(2ii + mG,)l d I)fil)* + ET Ilfii, II2 

+( l+$) ~~u:-~~~*. 

(E,(2ii + mzii,)l < IJ(U, u* - U, 26 + mzii,)l 

+ (J(u* - U, u*, 2ii + mtii,)l 

fc IUI, Iu*- UI I 125 + mrii, 1, 

<&V (iil;+&VT* lii,lf 

and 

IE,(2ii + mzfi,)l 

<c6z luPII liil1 12ii+mzi7,11 

G&V (iil;+EVT2 Ii&l: 

Ch2T2 
+- EV ( > 

1+; WA: 14:. 

Besides, it is not difficult to show that 

,F-, IEDfi + mzii,)l <EV \iil:+EVz* li,l: 

+v 1u*- u1:+02t2 IIp:ll* 
+ va2z2 IU,I:), 

IE,(2G+mzii,)l < lliill* + ET Ilfi, II* 

+ 1 +$ llf- P,o zz;fll*, ( > 
IJ%CV+~~P,N GP llP/12+~P~ lldrl12 

By substituting the above estimations into (6.6), we obtain 

(IMt)ll’+B IIP(t)l12)t+$m- 1 - 5~W,(~)ll* 

+B Ild,(r)l12)+v(1 -6~) IWI: 

+vz a+; (lzi(t)l:), 
( > 

+vz2 ma-a-F-5& 
( ) 

Iii,(t)\: 

+2(28--m)H(t) 

GC, (Ilfi(t)l12+B llPWl12) 

+ C,(t) lW)l: + G(t), (6.7) 
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where 

Now we choose the constants m and E. Take m = 20 and 
r0 > 0 to be sufficiently small. If 0 > i and 8 > o/(20 - 1 ), 
then we can take E and r0 to be so small that 

28amax 
( 

2a + 10s 
1+4s+r,,= . 

> 

If a < e/(2(3 - l), and 

v7(C,h-2+N*)< 
28-l 

a+B(l-20)’ (6.8) 

then we take E and r0 to be so small that 

28 - 1 - 4s - r0 3 vr[2B(i- a) + a + 5~1 

x (C,hp2+ N2). 

By (5.9), we have in both cases that 

7(m- 1 -4~)OI~,(t)l12+~ lM,(t)l12) 

+vz2 ma-a-55s 
( > 

la,(t)\: 

~~07Wr(t)l12 + P IlPt(t)l12). 

Conseouentlv. we obtain from (6.7) that 

+ ~‘7 a+: (iG(t)lT), 
t ) 

(6.9) 

~c,(l14t)l12+P lId(t)l 
+ C,(t) lfi(t)l: + G(t). 

Let E(q, 5, t) be defined as in Section III, and 

p(t)= IlW)l12+B IId(0)l12+v7 a+: lW)lf 
i > 

+7 c G(t’). 
I’<( T 

By summing (6.9) for all t’ < t - 7, t’ E S,, we obtain 

E(fi,B, t)<p(t)+7 1 (“lqfi,d, t’) 
r’<l, T 

+ C,(f) Iw’)l:). (6.10) 

Clearly, if the mesh size z is sufficiently small, then we have 

v 
C,(t)< -is 

czN(m - 26)’ 
Eh 

IIfi(t)ll 2. 

Hence we have from Lemma 6 that if there exists a t, E S, 
such that 

P(tl) 6 
Evh 

2cTN(m - 2~5)~’ 
(6.11) 

thenwehaveforallt<t,,tES,, 

E(z-i, p, t) d p(t) 8”. 

Thus, in order to obtain the convergence, we only need to 
obtain the order of p(t) and verify (6.11). 

By Lemma 2 and (5.2), we have 

lI~(O)ll <c lfi@N~ <4IW)-Q,Wo,l, 
+ IU(O)-P,~n~+‘u(o)l,) 

<c(h’p’+N’pS) IU(0)IMuCRj, 

F= min(r, k + 2), 

[u*(t)-- U(t)l, <c(h’-‘+N’-“) llU(t)ll,i.s,,,. 
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By Lemma 1, we have Thus we have from the above estimates that 

llm)ll d c II P(O)ll> 
Ilp*(t)-P(t)ll <c(h’-‘+N’-“) 

x IIP(f)ll ff-l.J-l(Q), 
llf(t)-PNd7;f(t)ll <c(h’-‘+N’-“) 

x llf(~)ll H’+‘.‘-‘(R). 

By using Taylor’s formula, we obtain that 

and, similarly, 

Besides, it is not difficult to show that 

p(t)< c*(~~+h~(‘-“+N~” - “‘+/j). 

where the constant C* is described in Theorem 1. 
Finally, we show that if h, N-‘, z, and b are sufficiently 

small and satisfy some conditions, then (6.11) holds for 
t, = T. In fact, suppose fi= O(z’), h = O(N -P), and 
r=O(N-“), with]., p>O.If (3.1) holdsfor8>a/(2a--l), 
then we have 

TNh-'(T2+h2"~')+N2"~"+B)-,o, 

as h, N-',t-+O. (6.12) 

Thus, in this case we have (6.11) for r i = T. If (T 6 e/(20 - 1) 
and (6.8) is satisfied, in addition, then we have (6.12) also. 
Hence (6.11) holds for t, = T. Thus we complete the proof 
of Theorem 1. 
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